Jupiter is a garden of storms

 

Brian Gallagher writes: It’s always a mistake to read,” Philip Marcus, a computational physicist and a professor in the mechanical engineering department at the University of California, Berkeley, tells me in a coffee shop near campus. “You learn too many things. That’s how I got really fascinated by fluid dynamics.”

It was 1978, and Marcus was in his first year of a post-doctoral position at Cornell focused on numerical simulations of solar convection and laboratory flows using spectral methods. But he had wanted to study cosmic evolution and general relativity; the problem, as Marcus told me, was that there was talk of no one seeing results of general relativity within their lifetime. As a result, “the field kind of collapsed on itself a little bit, and so everybody from general relativity was going to other fields.”

It was also in 1978 that Voyager 1 began to send up-close images of Jupiter back to Earth. When Marcus needed to, as he put it, “unwind, relax, whatever,” he would walk over to a special library, next to the astrophysics building, and marvel at Voyager’s images of the Great Red Spot. The storm had raged hundreds of millions of miles away since at least 1665, when it was first observed by Robert Hooke. “I realized that almost nobody in astronomy was trained in fluid dynamics, and I was,” he told me. “And I said, well, I’m in as good a position as anybody to start studying this.”

And he never stopped. Today, he is something of an expert on the solar system’s most famous storm. Sporting a mountain-biker’s build, he answered my questions with animation, often waving his hands around to clarify his concepts. He admitted this energy of his could encourage clumsiness. “People are leery of me,” he said. “If I walked into a laboratory, I would immediately break everything.” Thankfully, he explained, “I have the great fortune of having some wonderful friends who are experimentalists.” [Continue reading…]

Facebooktwittermail