The neurology for reaching a destination

Moheb Costandi writes: How do humans and other animals find their way from A to B? This apparently simple question has no easy answer. But after decades of extensive research, a picture of how the brain encodes space and enables us to navigate through it is beginning to emerge. Earlier, neuroscientists had found that the mammalian brain contains at least three different cell types, which cooperate to encode neural representations of an animal’s location and movements.
But that picture has just grown far more complex. New research now points to the existence of two more types of brain cells involved in spatial navigation — and suggests previously unrecognized neural mechanisms underlying the way mammals make their way about the world.

Earlier work, performed in freely moving rodents, revealed that neurons called place cells fire when an animal is in a specific location. Another type — grid cells — activate periodically as an animal moves around. Finally, head direction cells fire when a mouse or rat moves in a particular direction. Together, these cells, which are located in and around a deep brain structure called the hippocampus, appear to encode an animal’s current location within its environment by tracking the distance and direction of its movements.

This process is fine for simply moving around, but it does not explain exactly how a traveler gets to a specific destination. The question of how the brain encodes the endpoint of a journey has remained unanswered. To investigate this, Ayelet Sarel of the Weismann Institute of Science in Israel and her colleagues trained three Egyptian fruit bats to fly in complicated paths and then land at a specific location where they could eat and rest. The researchers recorded the activity of a total of 309 hippocampal neurons with a wireless electrode array. About a third of these neurons exhibited the characteristics of place cells, each of them firing only when the bat was in a specific area of the large flight room. But the researchers also identified 58 cells that fired only when the bats were flying directly toward the landing site. [Continue reading…]

Print Friendly, PDF & Email
Facebooktwittermail