Emily Singer writes: For the past 40 years, David Deamer has been obsessed with membranes. Specifically, he is fascinated by cell membranes, the fatty envelopes that encase our cells. They may seem unremarkable, but Deamer, a biochemist at the University of California, Santa Cruz, is convinced that membranes like these sparked the emergence of life. As he envisions it, they corralled the chemicals of the early Earth, serving as an incubator for the reactions that created the first biological molecules.
One of the great initial challenges in the emergence of life was for simple, common molecules to develop greater complexity. This process resulted, most notably, in the appearance of RNA, long theorized to have been the first biological molecule. RNA is a polymer — a chemical chain made up of repeating subunits — that has proved extremely difficult to make under conditions similar to those on the early Earth.
Deamer’s team has shown not only that a membrane would serve as a cocoon for this chemical metamorphosis, but that it might also actively push the process along. Membranes are made up of lipids, fatty molecules that don’t dissolve in water and can spontaneously form tiny packages. In the 1980s, Deamer showed that the ingredients for making these packages would have been readily available on the early Earth; he isolated membrane-forming compounds from the Murchison meteorite, which exploded over Australia in 1969. Later, he found that lipids can help form RNA polymers and then enclose them in a protective coating, creating a primitive cell. [Continue reading…]