Hints of tool use, culture seen in bumble bees

Science magazine reports: For years, cognitive scientist Lars Chittka felt a bit eclipsed by his colleagues at Queen Mary University of London. Their studies of apes, crows, and parrots were constantly revealing how smart these animals were. He worked on bees, and at the time, almost everyone assumed that the insects acted on instinct, not intelligence. “So there was a challenge for me: Could we get our small-brained bees to solve tasks that would impress a bird cognition researcher?” he recalls. Now, it seems he has succeeded at last.

Chittka’s team has shown that bumble bees can not only learn to pull a string to retrieve a reward, but they can also learn this trick from other bees, even though they have no experience with such a task in nature. The study “successfully challenges the notion that ‘big brains’ are necessary” for new skills to spread, says Christian Rutz, an evolutionary ecologist who studies bird cognition at the University of St. Andrews in the United Kingdom.

Many researchers have used string pulling to assess the smarts of animals, particularly birds and apes. So Chittka and his colleagues set up a low clear plastic table barely tall enough to lay three flat artificial blue flowers underneath. Each flower contained a well of sugar water in the center and had a string attached that extended beyond the table’s boundaries. The only way the bumble bee could get the sugar water was to pull the flower out from under the table by tugging on the string. [Continue reading…]


Something is shifting out there in the ocean

Rebecca Kessler writes: ‘It’s hard to believe that a 40-ton animal can get hidden. They’re sneaky.’ Charles ‘Stormy’ Mayo was scanning the sea from the deck of the R/V Shearwater searching for omens: a cloud of vapour, a patch of white water, a fluke. A few minutes earlier someone had spotted the first North Atlantic right whales of the day. But now they were down below and out of sight in 80 feet of murky seawater. Feeding, most likely.

Finally, a whale’s head emerged briefly on the sea surface. Then a slab of black back followed by the silhouette of flukes, signaling another deep dive. The appearance lasted maybe a second and a half. Groans from the crew, who did not quite manage to snap a photo that could help identify the whale, one of an early March influx that foretold another strong season in Cape Cod Bay. ‘There’s probably a bunch of whales here but it’s going to drive us crazy,’ Mayo chimed in. ‘I’m going to say there are probably three. It’s hard as hell to tell.’

The world’s rarest whales – Eubalaena glacialis – have been visiting the bay in late winter and early spring for as long as anyone can remember. But Mayo and his team at the Center for Coastal Studies (CCS) in Provincetown documented a puzzling uptick in recent years. Not just a few dozen animals, as was typical, but hundreds were showing up and, in one year, darn-near two-thirds of the world’s entire living population of around 500 North Atlantic right whales. ‘Right Whale Kingdom’ Mayo has called the bay. Simultaneously, the whales went AWOL from their usual summer feeding grounds 300 miles to the northeast in Canada’s Bay of Fundy and elsewhere, further mystifying researchers.

The Shearwater idled, waiting. The whales remained deep down, scooping up patches of zooplankton and straining out the seawater through the long strips of baleen in their mouths. Scooping and straining, scooping and straining. A change in the location of their preferred food is the most likely explanation for the whales’ wandering itinerary, Mayo said. Something is shifting out there in the ocean. As with so much else about their lives, only the whales know what it is. [Continue reading…]


Watching evolution happen in two lifetimes

Emily Singer writes: When Rosemary and Peter Grant first set foot on Daphne Major, a tiny island in the Galápagos archipelago, in 1973, they had no idea it would become a second home. The husband and wife team, now emeritus biology professors at Princeton University, were looking for a pristine environment in which to study evolution. They hoped that the various species of finches on the island would provide the perfect means for uncovering the factors that drive the formation of new species.

The diminutive island wasn’t a particularly hospitable place for the Grants to spend their winters. At less than one-hundredth the size of Manhattan, Daphne resembles the tip of a volcano rising from the sea. Visitors must leap off the boat onto the edge of a steep ring of land that surrounds a central crater. The island’s vegetation is sparse. Herbs, cactus bushes and low trees provide food for finches — small, medium and large ground finches, as well as cactus finches — and other birds. The Grants brought with them all the food and water they would need and cooked meals in a shallow cave sheltered by a tarp from the baking sun. They camped on Daphne’s one tiny flat spot, barely larger than a picnic table.

Though lacking in creature comforts, Daphne proved to be a fruitful choice. The Galápagos’ extreme climate — swinging between periods of severe drought and bountiful rain — furnished ample natural selection. Rainfall varied from a meter of rain in 1983 to none in 1985. A severe drought in 1977 killed off many of Daphne’s finches, setting the stage for the Grants’ first major discovery. During the dry spell, large seeds became more plentiful than small ones. Birds with bigger beaks were more successful at cracking the large seeds. As a result, large finches and their offspring triumphed during the drought, triggering a lasting increase in the birds’ average size. The Grants had observed evolution in action.

That striking finding launched a prolific career for the pair. They visited Daphne for several months each year from 1973 to 2012, sometimes bringing their daughters. Over the course of their four-decade tenure, the couple tagged roughly 20,000 birds spanning at least eight generations. (The longest-lived bird on the Grants’ watch survived a whopping 17 years.) They tracked almost every mating and its offspring, creating large, multigenerational pedigrees for different finch species. They took blood samples and recorded the finches’ songs, which allowed them to track genetics and other factors long after the birds themselves died. They have confirmed some of Darwin’s most basic predictions and have earned a variety of prestigious science awards, including the Kyoto Prize in 2009.

Now nearly 80, the couple have slowed their visits to the Galápagos. These days, they are most excited about applying genomic tools to the data they collected. They are collaborating with other scientists to find the genetic variants that drove the changes in beak size and shape that they tracked over the past 40 years. Quanta Magazine spoke with the Grants about their time on Daphne; an edited and condensed version of the conversation follows. [Continue reading…]


Rewriting Earth’s creation story


Rebecca Boyle writes: Humanity’s trips to the moon revolutionized our view of this planet. As seen from another celestial body, Earth seemed more fragile and more precious; the iconic Apollo 8 image of Earth rising above the lunar surface helped launch the modern environmental movement. The moon landings made people want to take charge of Earth’s future. They also changed our view of its past.

Earth is constantly remaking itself, and over the eons it has systematically erased its origin story, subsuming and cannibalizing its earliest rocks. Much of what we think we know about the earliest days of Earth therefore comes from the geologically inactive moon, which scientists use like a time capsule.

Ever since Apollo astronauts toted chunks of the moon back home, the story has sounded something like this: After coalescing from grains of dust that swirled around the newly ignited sun, the still-cooling Earth would have been covered in seas of magma, punctured by inky volcanoes spewing sulfur and liquid rock. The young planet was showered in asteroids and larger structures called planetisimals, one of which sheared off a portion of Earth and formed the moon. Just as things were finally settling down, about a half-billion years after the solar system formed, the Earth and moon were again bombarded by asteroids whose onslaught might have liquefied the young planet — and sterilized it.

Geologists named this epoch the Hadean, after the Greek version of the underworld. Only after the so-called Late Heavy Bombardment quieted some 3.9 billion years ago did Earth finally start to morph into the Edenic, cloud-covered, watery world we know.

But as it turns out, the Hadean may not have been so hellish. New analysis of Earth and moon rocks suggest that instead of a roiling ball of lava, baby Earth was a world with continents, oceans of water, and maybe even an atmosphere. It might not have been bombarded by asteroids at all, or at least not in the large quantities scientists originally thought. The Hadean might have been downright hospitable, raising questions about how long ago life could have arisen on this planet. [Continue reading…]


Tardigrades: The most fascinating animals known to science


Brian Resnick writes: Paul Bartels gets a rush every time he discovers a new species of tardigrade, the phylum of microscopic animals best known for being both strangely cute and able to survive the vacuum of space.

“The first paper I wrote describing a new species, there was a maternal-paternal feeling — like I just gave birth to this new thing,” he tells me on a phone call.

The rush comes, in part, because tardigrades are the most fascinating animals known to science, able to survive in just about every environment imaginable. “There are some ecosystems in the Antarctic called nunataks where the wind blows away snow and ice, exposing outcroppings of rocks, and the only things that live on them are lichens and tardigrades,” says Bartels, an invertebrate zoologist at Warren Wilson College in North Carolina.

Pick up a piece of moss, and you’ll find tardigrades. In the soil: tardigrades. The ocean: You get it. They live on every continent, in every climate, and in every latitude. Their extreme resilience has allowed them to conquer the entire planet.

And though biologists have known about tardigrades since the dawn of the microscope, they’re only just beginning to understand how these remarkable organisms are able to survive anywhere. [Continue reading…]


Why neuroscientists need to study the crow


Grigori Guitchounts writes: The animals of neuroscience research are an eclectic bunch, and for good reason. Different model organisms—like zebra fish larvae, C. elegans worms, fruit flies, and mice — give researchers the opportunity to answer specific questions. The first two, for example, have transparent bodies, which let scientists easily peer into their brains; the last two have eminently tweakable genomes, which allow scientists to isolate the effects of specific genes. For cognition studies, researchers have relied largely on primates and, more recently, rats, which I use in my own work. But the time is ripe for this exclusive club of research animals to accept a new, avian member: the corvid family.

Corvids, such as crows, ravens, and magpies, are among the most intelligent birds on the planet — the list of their cognitive achievements goes on and on — yet neuroscientists have not scrutinized their brains for one simple reason: They don’t have a neocortex. The obsession with the neocortex in neuroscience research is not unwarranted; what’s unwarranted is the notion that the neocortex alone is responsible for sophisticated cognition. Because birds lack this structure—the most recently evolved portion of the mammalian brain, crucial to human intelligence—neuroscientists have largely and unfortunately neglected the neural basis of corvid intelligence.

This makes them miss an opportunity for an important insight. Having diverged from mammals more than 300 million years ago, avian brains have had plenty of time to develop along remarkably different lines (instead of a cortex with its six layers of neatly arranged neurons, birds evolved groups of neurons densely packed into clusters called nuclei). So, any computational similarities between corvid and primate brains — which are so different neurally — would indicate the development of common solutions to shared evolutionary problems, like creating and storing memories, or learning from experience. If neuroscientists want to know how brains produce intelligence, looking solely at the neocortex won’t cut it; they must study how corvid brains achieve the same clever behaviors that we see in ourselves and other mammals. [Continue reading…]


1.5 billion birds missing from North American skies, ‘alarming’ report finds

The Canadian Press reports: North American skies have grown quieter over the last decades by the absent songs of 1.5 billion birds, says the latest summary of bird populations.

The survey by dozens of government, university and environmental agencies across North America has also listed 86 species of birds — including once-common and much-loved songbirds such as the evening grosbeak and Canada warbler — that are threatened by plummeting populations, habitat destruction and climate change.

“The information on urgency is quite alarming,” said Partners In Flight co-author Judith Kennedy of Environment Canada. “We’re really getting down to the dregs of some of these populations.”

The report is the most complete survey of land bird numbers to date and attempts to assess the health of populations on a continental basis. It concludes that, while there are still a lot of birds in the sky, there aren’t anywhere near as many as there used to be. [Continue reading…]


How trees talk to each other



Forget ideology, liberal democracy’s newest threats come from technology and bioscience

John Naughton writes: The BBC Reith Lectures in 1967 were given by Edmund Leach, a Cambridge social anthropologist. “Men have become like gods,” Leach began. “Isn’t it about time that we understood our divinity? Science offers us total mastery over our environment and over our destiny, yet instead of rejoicing we feel deeply afraid.”

That was nearly half a century ago, and yet Leach’s opening lines could easily apply to today. He was speaking before the internet had been built and long before the human genome had been decoded, and so his claim about men becoming “like gods” seems relatively modest compared with the capabilities that molecular biology and computing have subsequently bestowed upon us. Our science-based culture is the most powerful in history, and it is ceaselessly researching, exploring, developing and growing. But in recent times it seems to have also become plagued with existential angst as the implications of human ingenuity begin to be (dimly) glimpsed.

The title that Leach chose for his Reith Lecture – A Runaway World – captures our zeitgeist too. At any rate, we are also increasingly fretful about a world that seems to be running out of control, largely (but not solely) because of information technology and what the life sciences are making possible. But we seek consolation in the thought that “it was always thus”: people felt alarmed about steam in George Eliot’s time and got worked up about electricity, the telegraph and the telephone as they arrived on the scene. The reassuring implication is that we weathered those technological storms, and so we will weather this one too. Humankind will muddle through.

But in the last five years or so even that cautious, pragmatic optimism has begun to erode. There are several reasons for this loss of confidence. One is the sheer vertiginous pace of technological change. Another is that the new forces at loose in our society – particularly information technology and the life sciences – are potentially more far-reaching in their implications than steam or electricity ever were. And, thirdly, we have begun to see startling advances in these fields that have forced us to recalibrate our expectations.[Continue reading…]


Fish can recognize human faces, study shows


CNN reports: Can your pet fish recognize your face?

A new study says, Yes, it probably can.

Researchers studying archerfish found the fish can tell a familiar human face from dozens of new faces with surprising accuracy.

This is a big, big deal. It’s the first time fish have demonstrated this ability.

Think about it: All faces have two eyes sitting above a nose and a mouth. And for us to be able to tell them apart, we need to be able to pick up the subtle differences in features.

We’re good at this because we are smart, i.e. we have large and complex brains. Other primates can do this too. Some birds as well.

But a fish? A fish has a tiny brain. And it would have no reason in its evolution to learn how to recognize humans.

So this study, published in the journal “Scientific Reports,” throws on its head all our conventional thinking. It was done by scientists at University of Oxford in the U.K. and the University of Queensland in Australia. [Continue reading…]


Magpies challenge bird-brain myth


GrrlScientist writes: Birds have been disparaged publicly as “bird brains” for so long that most people have lost the ability to view them as intelligent and sentient beings. However, a group of researchers in Germany have conducted a series of studies with several captive European magpies, Pica pica, that challenge the average person’s view of birds and their cognitive abilities.

It is widely accepted in the scientific community that self-awareness is prerequisite for the development of consciousness. Previously, only mammals — humans and several of their cousins, chimpanzees and orangutans, as well as dolphins and elephants — were observed to have self-awareness by demonstrating that they could recognize themselves in a mirror.

However, a new study by a research group in Germany reveals that birds apparently also evolved self-recognition.

“[Our research] shows that the line leading to humans is not as special as many thought,” pointed out lead researcher Helmut Prior of the Institute of Psychology at Goethe University in Frankfurt, Germany.

To do their research, Prior and his colleagues carried out a series of tests with five hand-raised European magpies. [Continue reading…]


The strange case of the butterfly and the male-murdering microbe

Ed Yong writes: Hurbert Walter Simmonds had only been in Fiji for a year before he was appointed as Government Entomologist in 1920. It was an unusual role, but an important one. The island was repeatedly threatened by agricultural pests, and so Simmonds would spend the next 46 years searching for predators and parasites that could bring these crop-destroyers to heel.

In his downtime, he collected butterflies. There are thousands of species in Fiji, and the blue moon butterfly (Hypolimnas bolina) is among the most beautiful of them. The name comes from the males, whose black wings have three pairs of bright white spots, encircled by blue iridescence. They are stunning, and all males look the same. The females are more varied: they are clothed in a wide range of spots, stripes and hues, many of which mimic other local butterflies. Simmonds wanted to know how these patterns are inherited, so he started capturing and breeding the insects.

That’s when he noticed that most of the females only gave birth to females.

Some 90 percent of them would produce all-female broods. They laid large clutches of eggs and around half the embryos died — presumably, the male ones. Simmonds didn’t know why. [Continue reading…]