First support for a physics theory of life

Natalie Wolchover writes: The biophysicist Jeremy England made waves in 2013 with a new theory that cast the origin of life as an inevitable outcome of thermodynamics. His equations suggested that under certain conditions, groups of atoms will naturally restructure themselves so as to burn more and more energy, facilitating the incessant dispersal of energy and the rise of “entropy” or disorder in the universe. England said this restructuring effect, which he calls dissipation-driven adaptation, fosters the growth of complex structures, including living things. The existence of life is no mystery or lucky break, he told Quanta in 2014, but rather follows from general physical principles and “should be as unsurprising as rocks rolling downhill.”

Since then, England, a 35-year-old associate professor at the Massachusetts Institute of Technology, has been testing aspects of his idea in computer simulations. The two most significant of these studies were published this month — the more striking result in the Proceedings of the National Academy of Sciences (PNAS) and the other in Physical Review Letters (PRL). The outcomes of both computer experiments appear to back England’s general thesis about dissipation-driven adaptation, though the implications for real life remain speculative.

“This is obviously a pioneering study,” Michael Lässig, a statistical physicist and quantitative biologist at the University of Cologne in Germany, said of the PNAS paper written by England and an MIT postdoctoral fellow, Jordan Horowitz. It’s “a case study about a given set of rules on a relatively small system, so it’s maybe a bit early to say whether it generalizes,” Lässig said. “But the obvious interest is to ask what this means for life.”

The paper strips away the nitty-gritty details of cells and biology and describes a simpler, simulated system of chemicals in which it is nonetheless possible for exceptional structure to spontaneously arise — the phenomenon that England sees as the driving force behind the origin of life. “That doesn’t mean you’re guaranteed to acquire that structure,” England explained. The dynamics of the system are too complicated and nonlinear to predict what will happen. [Continue reading…]

Print Friendly, PDF & Email