Author Archives: Attention to the Unseen
Music: De-Phazz — ‘Nonsensical Thing’
Music: Ely Bruna — ‘1986’
Music: Papik — ‘Rhythm of Life’
Music: Papik — ‘Open Eyes’
That the world is not solid but made up of tiny particles is a very ancient insight
Carlo Rovelli writes: According to tradition, in the year 450 BCE, a man embarked on a 400-mile sea voyage from Miletus in Anatolia to Abdera in Thrace, fleeing a prosperous Greek city that was suddenly caught up in political turmoil. It was to be a crucial journey for the history of knowledge. The traveller’s name was Leucippus; little is known about his life, but his intellectual spirit proved indelible. He wrote the book The Great Cosmology, in which he advanced new ideas about the transient and permanent aspects of the world. On his arrival in Abdera, Leucippus founded a scientific and philosophical school, to which he soon affiliated a young disciple, Democritus, who cast a long shadow over the thought of all subsequent times.
Together, these two thinkers have built the majestic cathedral of ancient atomism. Leucippus was the teacher. Democritus, the great pupil who wrote dozens of works on every field of knowledge, was deeply venerated in antiquity, which was familiar with these works. ‘The most subtle of the Ancients,’ Seneca called him. ‘Who is there whom we can compare with him for the greatness, not merely of his genius, but also of his spirit?’ asks Cicero.
What Leucippus and Democritus had understood was that the world can be comprehended using reason. They had become convinced that the variety of natural phenomena must be attributable to something simple, and had tried to understand what this something might be. They had conceived of a kind of elementary substance from which everything was made. Anaximenes of Miletus had imagined this substance could compress and rarefy, thus transforming from one to another of the elements from which the world is constituted. It was a first germ of physics, rough and elementary, but in the right direction. An idea was needed, a great idea, a grand vision, to grasp the hidden order of the world. Leucippus and Democritus came up with this idea.
The idea of Democritus’s system is extremely simple: the entire universe is made up of a boundless space in which innumerable atoms run. Space is without limits; it has neither an above nor a below; it is without a centre or a boundary. Atoms have no qualities at all, apart from their shape. They have no weight, no colour, no taste. ‘Sweetness is opinion, bitterness is opinion; heat, cold and colour are opinion: in reality only atoms, and vacuum,’ said Democritus. Atoms are indivisible; they are the elementary grains of reality, which cannot be further subdivided, and everything is made of them. They move freely in space, colliding with one another; they hook on to and push and pull one another. Similar atoms attract one another and join.
This is the weave of the world. This is reality. Everything else is nothing but a by-product – random and accidental – of this movement, and this combining of atoms. The infinite variety of the substances of which the world is made derives solely from this combining of atoms. [Continue reading…]
Music: Mario Biondi — ‘Come to Me’
Music: Mario Biondi ft. Al Jarreau — ‘Light To The World’
Music: Mario Biondi — ‘This Is What You Are’
Music: Mario Biondi — ‘La Voglia La Pazzia L’Idea’
Music: Can — ‘Mushroom’
Music: Sidsel Endresen & Bugge Wesseltoft — ‘Try’
Music: Bugge Wesseltoft — ‘Change’
The neurology for reaching a destination
Moheb Costandi writes: How do humans and other animals find their way from A to B? This apparently simple question has no easy answer. But after decades of extensive research, a picture of how the brain encodes space and enables us to navigate through it is beginning to emerge. Earlier, neuroscientists had found that the mammalian brain contains at least three different cell types, which cooperate to encode neural representations of an animal’s location and movements.
But that picture has just grown far more complex. New research now points to the existence of two more types of brain cells involved in spatial navigation — and suggests previously unrecognized neural mechanisms underlying the way mammals make their way about the world.Earlier work, performed in freely moving rodents, revealed that neurons called place cells fire when an animal is in a specific location. Another type — grid cells — activate periodically as an animal moves around. Finally, head direction cells fire when a mouse or rat moves in a particular direction. Together, these cells, which are located in and around a deep brain structure called the hippocampus, appear to encode an animal’s current location within its environment by tracking the distance and direction of its movements.
This process is fine for simply moving around, but it does not explain exactly how a traveler gets to a specific destination. The question of how the brain encodes the endpoint of a journey has remained unanswered. To investigate this, Ayelet Sarel of the Weismann Institute of Science in Israel and her colleagues trained three Egyptian fruit bats to fly in complicated paths and then land at a specific location where they could eat and rest. The researchers recorded the activity of a total of 309 hippocampal neurons with a wireless electrode array. About a third of these neurons exhibited the characteristics of place cells, each of them firing only when the bat was in a specific area of the large flight room. But the researchers also identified 58 cells that fired only when the bats were flying directly toward the landing site. [Continue reading…]
Music: Bugge Wesseltoft ft. Dhafer Youssef — ‘Hope’
How diversity makes us smarter
Katherine W. Phillips writes: The first thing to acknowledge about diversity is that it can be difficult. In the U.S., where the dialogue of inclusion is relatively advanced, even the mention of the word “diversity” can lead to anxiety and conflict. Supreme Court justices disagree on the virtues of diversity and the means for achieving it. Corporations spend billions of dollars to attract and manage diversity both internally and externally, yet they still face discrimination lawsuits, and the leadership ranks of the business world remain predominantly white and male.
It is reasonable to ask what good diversity does us. Diversity of expertise confers benefits that are obvious — you would not think of building a new car without engineers, designers and quality-control experts — but what about social diversity? What good comes from diversity of race, ethnicity, gender and sexual orientation? Research has shown that social diversity in a group can cause discomfort, rougher interactions, a lack of trust, greater perceived interpersonal conflict, lower communication, less cohesion, more concern about disrespect, and other problems. So what is the upside?
The fact is that if you want to build teams or organizations capable of innovating, you need diversity. Diversity enhances creativity. It encourages the search for novel information and perspectives, leading to better decision making and problem solving. Diversity can improve the bottom line of companies and lead to unfettered discoveries and breakthrough innovations. Even simply being exposed to diversity can change the way you think. This is not just wishful thinking: it is the conclusion I draw from decades of research from organizational scientists, psychologists, sociologists, economists and demographers.
[Continue reading…]
Music: Sidsel Endresen & Bugge Wesseltoft — ‘River’
Music: Nils Petter Molvaer — ‘Kakonita’